Real Time Labor Market Estimates
During the 2020 Coronavirus Outbreak*

Alexander Bick Adam Blandin
Arizona State University Virginia Commonwealth University

April 24, 2020

Abstract
Labor market statistics for the United States are collected once a month and published with a three week delay. In normal times, this procedure results in timely and useful statistics. But these are not normal times. Currently, the most recent statistics refer to the week of March 8-14; new statistics will not be available until May 8. In the meantime, the Coronavirus outbreak has shut down a substantial portion of the US economy.

This project aims to provide data on labor market conditions every other week, and to publish results the same week, thereby reducing the information lag. We do so via an online labor market survey of a sample representative of the US working age population. Our core survey closely follows the CPS, which allows us to construct estimates consistent with theirs.

Our first two waves cover March 29-April 4 and April 12-18. Our estimates suggest unprecedented changes in the US labor market since the most recent CPS data from March 8-14:

1. In the week of April 12-18, the employment rate was 55.8% among working age adults. This implies 10 million jobs lost since early April, and 34 million lost since mid March.
2. The unemployment rate declined slightly since early April to 16.2%. This is because the labor force participation rate fell, implying fewer individuals are looking for work.
3. Among those who were employed in February, 42% have experienced a loss in earnings.
4. Declines in employment were initially concentrated among women, but recently have shifted towards men. Disparities by age and education have persisted, with losses concentrated among older and less educated workers.

*This is preliminary research still in progress. Feedback is appreciated. We thank the Center for the Advanced Study in Economic Efficiency at ASU and the Office of the Vice President for Research and Innovation at VCU for generous financial support. We thank Carola Grebitus, Richard Laborin, and Raphael Schoenle for crucial help starting this project, and Bart Hobijn and Todd Schoellman for feedback on this draft. We also thank Minju Jeong and Juan Odriozola for outstanding research assistance. Contact the authors at alexander.bick@asu.edu and ajblandin@vcu.edu.
1 Introduction

The 2019-2020 Coronavirus outbreak has prompted a sharp economic downturn in the US and around the world. Designing and implementing an effective policy response to the crisis is now a major priority for policymakers and researchers.

Effective policies require timely and accurate data on the scale of the downturn, yet traditional data sources are only made available at a significant lag. For example, the March 2020 Employment Situation report by the Bureau of Labor Statistics (BLS) only reflected labor market outcomes from the week ending Friday March 13, which precedes most major developments related to the outbreak. The April 2020 Employment Situation report will reflect labor market outcomes from the third week of April, but is not scheduled for release until May 8. The gap between the data needs of policymakers and the time lag of traditional data sources has left policymakers “flying blind” to a significant degree.

The goal of this project is to help fill that void. To do so we will collect online survey data every other week from a sample representative of the US working age population (age 18-64). The first wave of our survey references the week of March 29–April 4; the second wave references the week of April 12-18. We also ask questions about work experience prior to March 2020. The survey questions closely follow the structure of the Basic Labor Market module in the Consumer Population Survey (CPS), which allows us to compute labor market estimates consistent with their measures. We also include a suite of questions specifically tailored to the present economic situation which are not asked by the CPS. We refer to our survey as the Real Time Population Survey (RPS).

Our key estimates from our first two waves are as follows.

1. Dramatic reductions in employment.
 (a) We find an employment rate of 55.8% for April 12-18, compared with 60.7% for March 29-April 4 and 72.7% for March 8-14. This implies a total loss of 34 million jobs since the most recent CPS data were collected.
 (b) We find an unemployment rate of 16.2% for April 12-18, compared with 20.2% for March 29-April 4 and 4.5% for March 8-14.
 (c) The recent decline in unemployment was due to a large decrease in the labor force participation rate since early April, implying fewer individuals are looking for work.

2. Even larger declines in aggregate labor supply than implied by employment alone.
 (a) Hours worked per working age adult have declined 29% relative to March 8-14.
 (b) Initially the reduction in hours was roughly equally due to reductions in employment and reductions in hours per employed. Recently, however, reductions in employment have continued, while hours per employed have remained relatively constant.

For example, in the week ending on March 13, weekly initial claims of unemployment insurance were 281,000, compared with 3.3 million the following week.
3. Pervasive losses in earnings relative to February.

(a) Among individuals who were working in February 41.5% report lower earnings. This includes 25.8% who were not employed, and 15.7% who are still employed but earning less.

(b) At the same time, 11% of workers with the same job as in February report higher weekly earnings last week compared with February.

4. Disparities in labor market outcomes across key demographic groups.

(a) Although negative effects are widespread, they are more pronounced among workers who are older, and less educated.

(b) Declines in employment were initially concentrated among women, but recently have shifted towards men.

In the next section we provide a brief overview of our online survey and compare it to other prominent labor market surveys. Section 3 conducts validation exercises, comparing labor market outcomes for February in the CPS to retrospective reports of labor market outcomes from our respondents. Section 4 documents the key estimates for labor market aggregates derived from our survey. Section 6 documents heterogeneity in labor market changes across several demographic and economic groups. Finally, Section 7 concludes and discusses next steps for this project.
2 Our Real Time Population Survey (RPS)

The survey was designed by the authors and administered online to respondents of the Qualtrics panel. The first wave was administered to a sample of 1,118 respondents on April 8-9, 2020. The second wave was administered to a sample 1,986 respondents on April 22-23 and covered ages 18+. Our sample of respondents were selected to be representative of the US population (ages 18-64 in wave 1, ages 18+ in wave 2) along several characteristics (age, gender, race/ethnicity, education, marital status, presence of children, geographic region, and household income in 2019).

Our questionnaire follows as closely as possible the labor market portion of the basic module of the Current Population Survey (CPS), which is the primary source of labor market data for the US. This allows us to assign individuals to one of four basic labor force categories: employed and at work, employed and absent from work, unemployed, and not in the labor force. The distinctions between the latter three categories can be subtle, but are crucially important for the construction of aggregate labor market statistics. This is particularly true in the current economic situation where many workers have been dismissed from work with the hope of returning to work when conditions improve, which can blur the lines between labor force categories.

In addition to employment status, we ask several more questions of employed workers, including type of employer, industry, and hours of work. To learn about earnings, we adapt the extra questions asked of respondents of the Outgoing Rotation Group of the CPS. Since the CPS asks workers about “usual weekly earnings”, which may be difficult to interpret for workers whose earnings have recently changed, we slightly modified this question. Specifically, we ask about usual earnings prior to March 2020, and then ask workers to estimate how their earnings last week compared with their usual earnings prior to March. In the second wave, we also asked respondents exactly the same questions about their spouses or unmarried partners if they live in the same household. As in the CPS, where information about other household members is regularly provided by a single respondent, we use these observations to expand our survey. The only weighting procedure we use is to assign a weight of 0.5 to respondents with spouses, and the spouses; respondents not living with a spouse/partner receive a weight of 1.

Appendix A contains additional details on the survey design and construction of key variables. Appendix B compares summary statistics for our sample and with the CPS. Our sample lines up well with the CPS along the key targeted dimensions, and even for many finer subgroups. Appendix D provides a broad comparison of our dataset with the CPS and other relevant data sets.

We contribute to a burgeoning literature using real-time data to document US labor market patterns during the crisis, e.g., Adams-Prassl et al. (2020), Coibion et al. (2020), Bartik et al. (2020a), Bartik et al. (2020b), Cajner et al. (2020), Hanspal et al. (2020), Parker et al. (2020), Andersen et al. (2020), and Bell and Blanchflower (2020). The distinctive feature of our study is that we follow as closely as possible the questionnaire used by the BLS.

2 For reference, the Survey of Consumer Expectations, administered by the Federal Reserve Bank of New York, has a sample size of roughly 1,300 respondents.

3 There are also several studies collecting real-time data for other countries, see e.g., von Gaudecker et al. (2020),
3 Validation Exercise

Table 1: Validation February: Age 18-64

<table>
<thead>
<tr>
<th>Estimate of</th>
<th>CPS</th>
<th>RPS W2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment Rate (in %)</td>
<td>73.8</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>[73.5,74.2]</td>
<td>[73.3,76.7]</td>
</tr>
<tr>
<td>Usual Hours Worked per Employed</td>
<td>39.2</td>
<td>40.4</td>
</tr>
<tr>
<td></td>
<td>[39.1,39.3]</td>
<td>[39.7,41.0]</td>
</tr>
</tbody>
</table>

Note: 95% Confidence Interval in brackets.

While our sample lines up well with US population for the observable characteristics targeted, selection into the Qualtrics Panel based on unobservables is an important concern. In an attempt to address this, our second wave asked whether the respondent (and spouse/partner if present) was working in February, and if so, how many hours they usually worked per week. Since the BLS’s full sequence of questions for last week’s labor market status can be quite time consuming, we simply asked about work for pay or profit, or unpaid work in a business owned by someone in the household in February. This allows us to compare the employment rate and average hours worked per employed in our survey with the February CPS.

Table 1 shows that the retrospective February employment rate for the second wave of our survey is remarkably close to the employment rate in the February CPS. Similarly, the retrospective average of usual hours worked in February in our survey also closely aligns with average usual hours worked in the February CPS. While this cannot alleviate all concerns regarding the selection of our sample, it does provide some additional confidence in the estimates based on our survey.

4 Aggregate Employment, Unemployment, and Hours Worked

In this section we document our core findings regarding the employment rate, the unemployment rate, and hours worked during the survey reference week. See Appendix A for additional details on how we construct these variables from our survey data to align with CPS definitions.

4.1 The Employment Rate

Figure 1: Employment Rate, Age 18-64

![Employment Rate Chart]

Notes: Data from January 12-March 8 (gray) are derived from CPS surveys. More recent data (blue) are derived from responses to our online RPS survey. The 95% confidence interval for our most recent estimate is (53.9%, 57.8%).

Figure 1 plots the employment rate from January-April, 2020 for working age adults age 18-64. The employment rate represents the share of all individuals in our sample who were classified as employed (often also referred to as the employment to population ratio), which includes workers who were present at their job last week, as well as workers who were absent from their job for reasons such as a personal illness, vacation, or childcare emergency. The employed category excludes workers who were laid off or furloughed, even if respondents said this was temporary, following the CPS procedure.

In our survey the employment rate was 55.8% in April 12-18, with a 95% confidence interval of (53.9%, 57.8%). This represents a 23% (16.9 percentage point) decline from March of this year. For context, this marks the lowest employment rate for the US working age population (18-64) since 1962.\(^4\)

\(^4\)We use the CPS ASEC, also known as the March Supplement, to calculate the annual employment rate for the working age population from 1962 onwards. FRED provides this statistic for ages 15-64 monthly starting in 1977.
The fraction of workers counted as “employed” who were temporarily absent from work (on vacation, out sick, etc.) increased from 2.5% in February to 4.0% in March 8-14, to 7.6% in March 29-April 4. In our previous draft we argued that this could possibly signal additional declines in employment in the near future (for example, after they have used up all their sick days and vacation days). The large declines in employment since our first wave are consistent with this pattern. In April 12-18 the absent share had declined slightly to 6.3%, though this level is still far above the February level.

(LREM64TTUSM156S) and since then employment rate has always been higher than our report for the first week of April 2020.
4.2 The Unemployment Rate

Figure 2 plots the unemployment rate from January-April 2020. The unemployment rate represents the share of the labor force who were classified as unemployed. The unemployed include workers who were temporarily laid off or furloughed and would have been available to return to their employer if being recalled. Individuals who were not working are labeled unemployed if they were actively looking for work over the past four weeks and would be available to work if they would receive a job offer.

In our survey the unemployment rate was 16.2% in April 12-18, with a 95% confidence interval of (14.4%, 17.9%). This is an 11.7 percentage point increase from March 8-14. For context, this marks the highest unemployment rate for the age group 15-64 since 1962.

The reduction in employment between March 8-14 and our first wave (March 29-April 4) was nearly exactly offset by the increase in unemployment, implying that the labor force participation rate was virtually unchanged. Since our first wave, our estimated unemployment rate has decreased slightly, despite further declines in employment. This is because the labor force participation rate

5 A worker is classified as temporarily laid off if they have been either given a concrete date when to be recalled by the employer or an indication to be recalled within the next six months.

6 We use the CPS ASEC, also known as the March Supplement, to calculate the annual unemployment rate for the working age population from 1962 onwards. FRED provides this statistic for ages 15-64 quarterly starting in 1970 (LRUN64TTUSQ156S). Since then unemployment rate has always been lower than our report for the first week of April 2020.
declined substantially between our first and second waves, which we document in the next section.

One reason for the drop in the unemployment rate relates to differences in how we defined unemployment in the first and second waves. In our initial wave, we noticed a deviation from the CPS protocol of how unemployment is defined, which resulted in some individuals being labeled unemployed rather than not in the labor force. First, we labeled all laid off workers as unemployed, and did not ask them whether they would be available to return to work if recalled. Second, we only asked people whether they looked for work in the last four weeks, rather than distinguishing between passive and active search, as the CPS does. In the second wave, we have addressed both these issues. To assess the quantitative importance of this difference in categorization procedures, we implemented the categorization procedure from our first wave using the data from our second wave. The alternative first-wave-procedure generates an unemployment rate of 18.6% (with a 95% confidence interval of 16.7% to 20.4%), compared with our actual unemployment rate estimate of 16.2%. This suggests that our first wave’s estimate of the unemployment rate of 20.2% may have been overstated by 2-3 percentage points.
Table 2: Unemployment Insurance and the Non-Employed

<table>
<thead>
<tr>
<th>Unemployment Insurance</th>
<th>% Share of Non-Employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not receiving/Won’t Apply</td>
<td>64.2</td>
</tr>
<tr>
<td>Receiving/Approved</td>
<td>18.8</td>
</tr>
<tr>
<td>Applied, Awaiting Decision</td>
<td>6.0</td>
</tr>
<tr>
<td>Will Apply</td>
<td>11.1</td>
</tr>
<tr>
<td>Observations</td>
<td>1,077</td>
</tr>
</tbody>
</table>

4.2.1 Unemployment Insurance and Labor Market Status

An important source of high frequency labor market data are the weekly unemployment insurance (UI) claims reported by state unemployment agencies (see Appendix D). Since the most recent CPS statistics were released, states have reported 26 million new initial UI claims. An important question facing policy makers is concerns how many more claims will be initiated in the near future.

While the answer to this question depends on many unknowns, our survey can shed light on one factor. Specifically, in wave 2 of our survey we ask respondents who were not employed last week a series of questions about whether they are currently receiving UI, whether they have applied and are awaiting a decision, and if they have not applied whether they plan to apply in the near future.

Table 2 shows that, among the 1,077 respondents or spouses/partners who were not employed last week, 18.8% are currently receiving or have been approved and are awaiting UI payments. Given a working age population for the US of 202 million, this implies 17 million individuals who have been approved for UI, which is modestly below the 26 million figure reported above. However, nearly as many respondents (17.1%) report that they have either already applied for UI and are awaiting a decision, or plan to apply in the near future. To the extent that individuals in this group actually apply and are approved for UI, this suggests that UI claims could continue to increase substantially in the near future, even absent any additional declines in employment.

We conclude this section by noting that many individuals who are receiving UI are actually classified by our survey as not in the labor force, rather than unemployed. 24% of the non-employed are unemployed, 33% are not in the labor force but report wanting a job, and 44% are not in the labor force and do not want a job. Only about half of those currently approved for or receiving UI are classified as unemployed, while the remaining half are classified as not in the labor force.
4.3 The Labor Force Participation Rate

Figure 3: Labor Force Participation Rate, Age 18-64

Notes: Data from January 12-March 8 (gray) are derived from CPS surveys. More recent data (blue) are derived from responses to our online RPS survey. The 95% confidence interval for our most recent estimate is (64.8%, 68.5%).

Figure 3 plots the labor force participation rate from January-April 2020 for working age adults age 18-64. The labor force participation rate represents the share of the population who is either employed or unemployed. The labor force does not include individuals who were not working and were not looking for work (for example, full time students, homemakers, or retirees).

In our survey the labor force participation rate was 66.6% in April 12-18, with a 95% confidence interval of (64.8%, 68.5%). This is a 9.5 percentage point decrease from March 8-14. Strikingly, in our survey the entire decline in the participation rate has occurred since our first wave.
4.4 Hours Worked per Working Age Adult

Figure 4: Actual Hours Worked Last Week, Age 18-64

(a) Hours Worked per Working Age Adult

(b) Hours Worked per Employed

Notes: Data from January 12-March 8 (gray) are derived from CPS surveys. More recent data (blue) are derived from responses to our online RPS survey. The 95% confidence interval for our most recent estimate of hours per working age adult is (18.6%, 20.3%). The 95% confidence interval for our most recent estimate of hours per employed is (33.9%, 35.7%).

Figure 4a plots hours worked per working age adult, which represents average hours worked last week by the entire sample population. Individuals who were unemployed or not in the labor force contribute a “zero” to this average, as do employed individuals who were absent from work last week. Alternatively, Figure 4b plots hours worked per employed person, which excludes individuals who were unemployed or not in the labor force.

The decline in hours worked per working age adult suggested by our survey is staggering: from March 8-14 to April 12-18, hours worked per working age adult last week declined 29%, from 27.5 hours to 19.4 hours. For context, this marks the lowest hours worked per person and per worker for the age group 18-64 since at least 1962.\(^7\)

In our first wave, the decline in hours worked per working age adult was roughly equally accounted for by (i) lower employment and (ii) fewer hours worked per employed. Since then, employment has continued to decline, while hours per employed have remained relatively flat. As a result, in our most recent wave roughly 80% of the decline in hours per working age adult was due to the employment (extensive) margin, versus 20% due to the hours per employed (intensive) margin. An important implication is that one fifth of the decline in the aggregate labor supply has come from the reduction in hours worked per employed, which is not reflected in measures of the employment rate or new UI claims.

\(^7\)We use the CPS ASEC, also known as the March Supplement, to calculate the average annual hours worked per person and per worker aged 18-64 from 1962-onwards. FRED does not provide a comparable statistic.
5 Changes in Worker Earnings

Figure 5: Earnings Changes Among Those Working in February, Age 18-64

![Chart showing earnings changes among those working in February, Age 18-64.]

Notes: Results are derived from responses to the April 12-18 wave of our online RPS survey from workers who report that they were employed in February 2020. 13.8% of respondents reported that they were unsure of how their earnings last week compared to their usual weekly earnings prior to March 2020.

Figure 5 plots the distribution of earnings changes among workers who reported being employed in February 2020. To derive this figure, our survey first asked these workers to report their usual earnings at that job, where usual was specified to mean prior to March 2020. We then asked workers to report how their earnings last week compared to their usual earnings. Rather than requiring respondents to enter a specific percentage, which might be difficult (especially for those not being paid weekly or hourly), we provided six different options for respondents to choose from: (i) about a quarter (25%) of their usual earnings, (ii) about half (50%) of usual, (iii) about three quarters (75%) of usual, (iv) about the same as usual, (v) more than usual, or (vi) unsure.

We find that 41.5% of respondents earned less last week than they usually did prior to March 2020, 33.5% earned about the same, 11.2% earned more than usual, and 13.8% were unsure how their earnings last week compared.

We emphasize that these questions differ from the questions asked in the CPS ORG, which asks about usual earnings at the respondent’s main job without specifying a precise time period. The CPS interviewer’s manual (Section 4.F.2) specifies that, for non-hourly workers, if earnings fluctuate, respondents should report “what the earnings are 50 percent of the time or more. If the

8For workers who had started a new job since March, we asked them for their usual earnings at their new job, and converted this figure to a weekly rate.
respondent is unable to answer, ask for the most frequent earnings amount during the past 4 or 5 months.” For non-hourly workers who have received a pay cut since March that may or may not turn out to be temporary, it is not at all obvious that their CPS respondents’ reports of “usual earnings” will reflect these changes. By contrast, our survey attempts to elicit these short run earnings changes.\footnote{We note that the 2021 CPS ASEC will ask about annual earnings during the 2020 calendar year, which should capture even temporary earnings reductions. However, this data will not be available until April 2021.}
6 For Whom Did Employment and Hours Fall Most?

6.1 Labor Market Outcomes by Sex

Figure 6: Labor Market Outcomes by Sex, Age 18-64

(a) Employment Rate

(b) Hours Worked per Employed

Notes: Data from March 8 are derived from CPS surveys. More recent data are derived from responses to our online RPS survey.

Figure 6 displays the employment rate and hours worked per employed by sex from January-April, 2020. At the start of April, employment declined more severely for females, 21.3% (14.5 percentage points), than for males, 12.2% (9.5 percentage points). Hours worked per employed declined similarly for females (4.3 hours per week) and males (4.9 hours per week). This initial difference in employment outcomes by sex is consistent with the notion that females are disproportionately employed in industries hit hardest by the Coronavirus outbreak (such as services and especially face to face services).

Since our first wave, declines in employment have shifted somewhat towards men. Between our first and second waves, employment declined 6.6 percentage points for men, versus 2.9 percentage points for women. This could be one indication that the economic downturn is spreading beyond the face to face service sector which saw the largest declines initially.
6.2 Labor Market Outcomes by Age

Figure 7: Labor Market Outcomes by Age, Age 18-64

(a) Employment Rate
(b) Hours Worked per Employed

Notes: Data from March 8 are derived from CPS surveys. More recent data are derived from responses to our online RPS survey.

Figure 7 displays the employment rate and hours worked per employed by broad age groups from January-April, 2020. Perhaps surprisingly, as of April 12-18, employment has declined less for young workers under 30 (7.2 percentage points) than for middle aged workers (19.9 percentage points) and older workers (19.4 percentage points). Hours worked per employed declined slightly less for young workers under 30, though the differences in hours changes among the employed were smaller than the differences in employment changes.

This pattern stands in contrast with typical recessions in the US, which tend to observe larger declines in employment and work for young workers who are less firmly attached to the labor market. One possibility is that young workers might be disproportionately likely to work in jobs that can be done from home, or to work for industries whose demand has remained firm during the downturn (such as delivery services). Another possibility is that older workers are taking additional health precautions relative to younger workers, which involves reducing their own labor supply.
6.3 Labor Market Outcomes by Education

Figure 8: Labor Market Outcomes by Education Group, Age 18-64

(a) Employment Rate

(b) Hours Worked per Employed

Notes: Data from March 8 are derived from CPS surveys. More recent data are derived from responses to our online RPS survey. No college degree includes individuals with some college but no college degree. College degree includes individuals with associates degrees and higher.

Figure 8 displays the employment rate and hours worked per employed by broad education groups from January-April, 2020. As of April 12-18, employment has declined more severely for individuals with no college degree (19.4 percentage points) than for individuals with a college degree (14.9 percentage points). In our first wave, hours worked per employed also declined more for non-college workers than for workers with a college degree, though this gap has now essentially vanished. This difference in outcomes by education is consistent with the notion that more educated workers are more likely to be able to work from home, and historically have been less likely to become unemployed during recessions.
7 Next Steps

The goal of this project is to provide real time estimates of the rapidly changing state of the US economy, focusing in particular on the labor market. Our hope is that these estimates will be of use to both policymakers and researchers, who we encourage to reach out to us with questions.

As we mention in our introduction, the next wave of data from the CPS is scheduled for release on Friday, May 8. This wave will reflect labor market outcomes for the week of April 12-18, which is the same reference week as our second and most recent wave. We view this as an important test of the usefulness of our Real Time Population Survey (RPS).

The next wave of our survey will be conducted on May 5, with a reference week of April 26-May 2. We hope to release results on Monday, May 11. We intend to continue conducting a new survey twice per month for as long as funding permits.
References

——— (2020b): “When school closes, dad works and mum stays home?”.

LOPES, M. C. (2020): “Adoption of Telework and E-learning During COVID-19 Lockdown,”.

YALNIZYAN, A. AND D. GOLDFARB (2020): “A different type of crisis demands a different type of data.”
Appendices

A Details on Data Collection and Variable Construction

All data labeled “RPS” in this paper were collected by an online survey designed by the authors, which we refer to as the Real Time Population Survey (RPS). The survey was constructed using Qualtrics software and administered by Qualtrics. We collected the first wave of responses on April 8-9, 2020, and the second wave on April 22-23, 2020. The average time to complete the survey was 6 minutes. Survey respondents received modest compensation from Qualtrics.

A.1 Sample Selection

To be eligible to participate in the study, participants had to reside in the US, be age 18 or older (in wave 1, 18-64) and speak English. The sample was selected to be consistent with the US population based on sex (male, female), education (high school or less, some college or more), race and origin (white, black, hispanic), marital status (currently married, not currently married), residing with children (currently residing with children, not currently residing with children), geographic region (Northwest, Northeast, Southeast, Southwest), and household income in 2019. Our full sample for our first wave was 1,118 respondents; our full sample for our second wave was 1,986 respondents. Appendix B discusses summary statistics.

A.2 Survey Design

The survey has three basic modules: background, work history, and childcare.

The background module asked respondents’ zip code, sex, age, race and origin, education, and marital status, as well as cohabitation status for non-married respondents. If the respondent lived with a spouse or partner, we asked the same information of the spouse/partner. We then asked whether any other adults lived in the home, the age and number of children in the home, and the total household income during 2019.

The work history module was closely modeled after the basic CPS labor market module. We first attempt to elicit respondents’ labor market status last week. If the respondent was employed and present at work last week, we ask about employer type, industry, hours worked, hours worked from home, time spent commuting, whether they worked multiple jobs, whether they are paid hourly, and earnings. We distinguish between respondents whose main job is at a household business versus respondents whose main job is not at their household business. We also ask whether they were working at the same job prior to March of this year (2020), and we ask a similar set of questions about their usual work experience prior to March. Finally, we ask a subset of these questions about the work experience of their spouse/partner (if present).

The third module asks about the childcare practices of households with children under age 14. We ask whether they usually used a set of types of childcare in February of this year and if they used these types of childcare last week. If the use of childcare changed between February and last
week, we ask why that was. We also ask how many hours the respondent (and their spouse/partner if present) spent as the sole care giver for a household child under age 14 during February of this year and last week.

A.3 Variable Construction

This section details how we use responses to our survey to construct a set of key variables: employment status, layoff status, actual hours worked last week, and usual weekly hours worked prior to March. Our procedure for variable construction closely follows the instructions in the CPS Interviewing Manual, which is available on the BLS’s website.

Employment Status. Employment status has four possible values, all referring to last week: (1) employed and present, (2) employed and absent, (3) unemployed, (4) not in the labor force.

1. Employed - at work:
 - Respondents who reported that last week they (i) had a job (excluding unpaid work), and (ii) worked positive hours for pay at that job.
 - Respondents who worked at a household business and reported that last week they either (i) worked positive hours for pay, or (ii) worked at least 15 unpaid hours.

2. Employed - absent:
 - Respondents who reported that last week they (i) had a job (excluding unpaid work), (ii) did not work positive hours for pay at that job for any reason, and (iii) were not on temporary or indefinite layoff from a job.

3. Unemployed - on layoff:
 - Respondents who reported that last week they (i) had a job (excluding unpaid work), (ii) did not work positive hours for pay at that job, and (iii) were on temporary layoff and could have returned to work last week if they had been recalled. Individuals satisfying these criteria do not have to look actively for work in the last four weeks.

4. Unemployed - looking:
 - Respondents reported that last week they (i) did not have a job, or were on temporary leave but could have returned to work to this job last week if they had been recalled, or were on indefinite leave, and (ii) had actively looked for work in the last four weeks, and (iii) would be available to work if they had been offered a job last week.

5. Not in the labor force
 - Respondents who reported that ast week they (i) did not have a job, and (ii) were either that not actively looking for work in the previous four weeks, or that they would not be available to work if they had been offered a job last week.
• Respondents who worked at a household business and reported that last week they (i) did not work positive hours for pay, and (ii) worked less than 15 unpaid hours.

*In wave 1, we used a slightly different definition of unemployment and not in the labor force. First, we categorized all laid off workers as unemployed and did not require active search for a job during the last four weeks. That resulted in larger pool of unemployed offset by a smaller not in the labor force pool.

Layoff Status. We classify respondents as on layoff if they reported that last week they (i) had a job (excluding unpaid work but including temporary layoffs), (ii) did not work positive hours for pay at that job for any reason, and (iii) were on temporary or indefinite layoff from a job. Among those on layoff, we distinguish between temporary layoffs (who either have a date to return to work, or who have been given an indication they will be recalled within the next six months) and permanent layoffs (who have not been given an indication they will be recalled within the next six months).

Actual hours worked last week. All respondents who were classified as employed and present last week were asked “last week, how many hours did you actually work at your job?” Respondents who reported working multiple jobs last week were asked both “last week, how many hours did you actually work at your main job?” and “last week, how many hours did you actually work at your all other jobs?”, where main job was defined as the job in which they usually worked the most hours.

Usual weekly hours worked prior to March. All respondents were asked about their labor market status and hours worked prior to March of this year (2020). This was done in two slightly different ways depending on whether the respondent worked at a job last week that they had started prior to March.

• For respondents who had a job last week, and who reported that they worked at that job in February, we asked “before March, how many hours per week did you usually work at this job?”

• For respondents who either did not have a job last week, or who reported that they were not working at this job in February, we first asked them “In February, which of the following best describes your work experience? (i) work for pay or profit, (ii) unpaid work at a business owned by someone in my household, or (iii) not working.” If they selected either (i) or (ii), we asked them “Before March, how many hours per week did you usually work at your job from February?”

Earnings For individuals who had a job last week, and who began that job prior to March 2020, we asked them to report their usual earnings at that job, where usual was specified to mean prior to March 2020. We followed the CPS in by first asking (i) which period was easiest for respondents to report their usual earnings before taxes or deductions (hourly, daily, weekly, every other week, monthly, or yearly), then asking (ii) how much they usually earned per period. We then asked workers to report how their earnings last week compared to their usual earnings. Rather than requiring respondents to enter a specific percentage, which might be difficult (especially for those
not being paid weekly or hourly), we provided six different options for respondents to choose from: Compared to their usual weekly earnings prior to March 2020, last week they earned (i) more than usual, (ii) about the same as usual, (iii) about three quarters (75%) of their usual earnings, (iv) about half (50%) of usual, (v) about a quarter (25%) of usual, or (vi) unsure.

For individuals who had changed jobs since February, we ask about their usual earnings both in February (if working in February) and at their current job (if they were working last week).
B Summary Statistics for Survey Data

The Qualtrics panel does not represent a random subsample of the US population, but Qualtrics selects the sample such that it is in line with key demographics. In particular, the sample was targeted such that it consists of 50% men and 50% women, matches the composition by three age bins, race and ethnicity, education (some college or less vs. associates and above), married or not, number of children in the household, three household income bins ($<50k, 50k-100k, >$100k) and by region. For the first wave, the targets were provided directly by Qualtrics and based on the US Census. For the second wave, we provided the targets ourselves based on the January-March CPS.

Table B1 compares the sample composition in the Basic CPS from January through March 2020 with our second wave and shows that our survey tracks the CPS closely. Note that this is the age group 18+ and only based on the respondent’s characteristic. Since our main analysis focuses on the age group 18-64, and our sample for wave 2 also includes the respondents, Table B2 reports these corresponding summary statistics for finer age, education, relationship status and income groups.
Table B1: Sample Composition by Targeted Characteristics

<table>
<thead>
<tr>
<th></th>
<th>CPS</th>
<th>RPS W2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>48.3</td>
<td>46.9</td>
</tr>
<tr>
<td>Women</td>
<td>51.7</td>
<td>52.7</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>11.5</td>
<td>11.9</td>
</tr>
<tr>
<td>25-34</td>
<td>17.9</td>
<td>17.2</td>
</tr>
<tr>
<td>35-54</td>
<td>30.7</td>
<td>28.4</td>
</tr>
<tr>
<td>55-64</td>
<td>18.5</td>
<td>19.8</td>
</tr>
<tr>
<td>64+</td>
<td>21.5</td>
<td>22.6</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-hispanic White</td>
<td>62.8</td>
<td>62.0</td>
</tr>
<tr>
<td>Non-hispanic Black</td>
<td>12.0</td>
<td>12.3</td>
</tr>
<tr>
<td>Hispanic</td>
<td>16.7</td>
<td>17.4</td>
</tr>
<tr>
<td>Other</td>
<td>8.6</td>
<td>8.3</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school or less</td>
<td>37.9</td>
<td>38.1</td>
</tr>
<tr>
<td>Some college/Associate’s degree</td>
<td>27.7</td>
<td>26.5</td>
</tr>
<tr>
<td>Bachelor’s or Graduate degree</td>
<td>34.3</td>
<td>35.4</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>52.8</td>
<td>54.6</td>
</tr>
<tr>
<td>Non-Married</td>
<td>47.2</td>
<td>45.4</td>
</tr>
<tr>
<td>Number of children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>74.8</td>
<td>73.1</td>
</tr>
<tr>
<td>1</td>
<td>10.6</td>
<td>11.3</td>
</tr>
<tr>
<td>2</td>
<td>9.5</td>
<td>10.4</td>
</tr>
<tr>
<td>3+</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Household Income Last Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0-$50,000</td>
<td>37.9</td>
<td>36.5</td>
</tr>
<tr>
<td>$50,000-$100,000</td>
<td>29.4</td>
<td>31.4</td>
</tr>
<tr>
<td>$100,000+</td>
<td>32.8</td>
<td>32.1</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midwest</td>
<td>21.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Northeast</td>
<td>18.0</td>
<td>19.2</td>
</tr>
<tr>
<td>South</td>
<td>36.8</td>
<td>36.4</td>
</tr>
<tr>
<td>West</td>
<td>24.2</td>
<td>24.4</td>
</tr>
</tbody>
</table>

Note: The statistics from the CPS are for the Basic Interviews from January through March 2020. * Taken from the March 2020 Release of the CPS ASEC, which reports total household income for the year 2019.
Table B2: Sample Composition Age 18-64

<table>
<thead>
<tr>
<th></th>
<th>CPS</th>
<th>RPS W1</th>
<th>RPS W2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>49.3</td>
<td>49.0</td>
<td>47.5</td>
</tr>
<tr>
<td>Women</td>
<td>50.7</td>
<td>50.4</td>
<td>52.0</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>14.9</td>
<td>16.3</td>
<td>15.4</td>
</tr>
<tr>
<td>25-34</td>
<td>23.2</td>
<td>22.7</td>
<td>23.4</td>
</tr>
<tr>
<td>35-44</td>
<td>21.3</td>
<td>21.6</td>
<td>22.1</td>
</tr>
<tr>
<td>45-54</td>
<td>20.7</td>
<td>15.2</td>
<td>17.0</td>
</tr>
<tr>
<td>55-64</td>
<td>19.9</td>
<td>23.3</td>
<td>22.1</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-hispanic White</td>
<td>59.0</td>
<td>67.2</td>
<td>57.6</td>
</tr>
<tr>
<td>Non-hispanic Black</td>
<td>12.7</td>
<td>11.1</td>
<td>14.0</td>
</tr>
<tr>
<td>Hispanic</td>
<td>19.0</td>
<td>11.9</td>
<td>19.0</td>
</tr>
<tr>
<td>Other</td>
<td>9.3</td>
<td>9.8</td>
<td>9.4</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No high school degree</td>
<td>9.4</td>
<td>4.0</td>
<td>4.4</td>
</tr>
<tr>
<td>High school graduate or</td>
<td>27.3</td>
<td>22.4</td>
<td>31.9</td>
</tr>
<tr>
<td>the equivalent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some college but no</td>
<td>18.1</td>
<td>21.9</td>
<td>16.6</td>
</tr>
<tr>
<td>degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associate’s degree in</td>
<td>10.3</td>
<td>11.2</td>
<td>11.4</td>
</tr>
<tr>
<td>college</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>22.9</td>
<td>23.6</td>
<td>21.4</td>
</tr>
<tr>
<td>Graduate degree</td>
<td>12.0</td>
<td>16.9</td>
<td>14.2</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married, spouse present</td>
<td>49.5</td>
<td>51.9</td>
<td>48.6</td>
</tr>
<tr>
<td>Married, spouse absent</td>
<td>1.5</td>
<td>1.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Separated</td>
<td>1.9</td>
<td>1.8</td>
<td>2.4</td>
</tr>
<tr>
<td>Divorced</td>
<td>9.3</td>
<td>7.6</td>
<td>8.4</td>
</tr>
<tr>
<td>Widowed</td>
<td>1.6</td>
<td>2.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Never Married</td>
<td>36.1</td>
<td>35.0</td>
<td>37.5</td>
</tr>
<tr>
<td>Relationship Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spouse/Partner living in</td>
<td>58.4</td>
<td>70.3</td>
<td>64.2</td>
</tr>
<tr>
<td>same household</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Spouse/Partner living</td>
<td>41.6</td>
<td>29.7</td>
<td>35.8</td>
</tr>
<tr>
<td>same household</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of children</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>67.7</td>
<td>60.4</td>
<td>66.0</td>
</tr>
<tr>
<td>1</td>
<td>13.6</td>
<td>17.0</td>
<td>14.1</td>
</tr>
<tr>
<td>2</td>
<td>12.2</td>
<td>15.7</td>
<td>13.3</td>
</tr>
<tr>
<td>3+</td>
<td>6.5</td>
<td>6.9</td>
<td>6.6</td>
</tr>
<tr>
<td>Household Income Last</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0-$25,000</td>
<td>16.3</td>
<td>15.4</td>
<td>16.6</td>
</tr>
<tr>
<td>$25,000-$50,000</td>
<td>18.8</td>
<td>20.4</td>
<td>19.9</td>
</tr>
<tr>
<td>$50,000-$75,000</td>
<td>16.0</td>
<td>17.4</td>
<td>18.7</td>
</tr>
<tr>
<td>$75,000-$100,000</td>
<td>13.1</td>
<td>13.5</td>
<td>10.5</td>
</tr>
<tr>
<td>$100,000-$125,000</td>
<td>9.9</td>
<td>8.9</td>
<td>12.6</td>
</tr>
<tr>
<td>$125,000-$150,000</td>
<td>6.9</td>
<td>7.6</td>
<td>8.7</td>
</tr>
<tr>
<td>$150,000+</td>
<td>19.0</td>
<td>13.1</td>
<td>11.2</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midwest</td>
<td>20.9</td>
<td>19.4</td>
<td>19.0</td>
</tr>
<tr>
<td>Northeast</td>
<td>17.7</td>
<td>23.0</td>
<td>19.2</td>
</tr>
<tr>
<td>South</td>
<td>36.9</td>
<td>36.6</td>
<td>37.1</td>
</tr>
<tr>
<td>West</td>
<td>24.5</td>
<td>21.0</td>
<td>24.8</td>
</tr>
</tbody>
</table>

Note: The statistics from the CPS are for the Basic Interviews from January through March 2020.

* Taken from the March 2020 Release of the CPS ASEC, which reports total household income for the year 2019.
C Results for All Adults Age 18+

In this section we document our core findings regarding the employment rate, the unemployment rate, and hours worked during the survey reference week.

C.1 The Employment Rate

Figure C1: Employment Rate, Age 18+

Notes: Data from January-March (gray) are derived from CPS surveys. Data from April (blue) are derived from responses to our online survey. The 95% confidence interval for our most recent estimate is (44.7%, 48.1%).
C.2 The Unemployment Rate

Figure C2: Employment Rate, Age 18+

Notes: Data from January-March (gray) are derived from CPS surveys. Data from April (blue) are derived from responses to our online survey. The 95% confidence interval for our most recent estimate is (14.5%, 17.9%).
C.3 The Labor Force Participation Rate

Figure C3: Labor Force Participation Rate, Age 18+

Notes: Data from January-March (gray) are derived from CPS surveys. Data from April (blue) are derived from responses to our online survey. The 95% confidence interval for our most recent estimate is (53.6%, 57.1%).
C.4 Hours Worked

Figure C4: Actual Hours Worked Last Week, Age 18+

(a) Hours Worked per Adult

<table>
<thead>
<tr>
<th>Month</th>
<th>Hours Worked per Capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 12</td>
<td>23.4</td>
</tr>
<tr>
<td>Feb 9</td>
<td>23.5</td>
</tr>
<tr>
<td>Mar 8</td>
<td>22.8</td>
</tr>
<tr>
<td>Apr 12 (RPS)</td>
<td>15.9</td>
</tr>
</tbody>
</table>

(b) Hours Worked per Employed

<table>
<thead>
<tr>
<th>Month</th>
<th>Hours Worked per Employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 12</td>
<td>38.2</td>
</tr>
<tr>
<td>Feb 9</td>
<td>38.1</td>
</tr>
<tr>
<td>Mar 8</td>
<td>37.9</td>
</tr>
<tr>
<td>Apr 12 (RPS)</td>
<td>34.3</td>
</tr>
</tbody>
</table>

Notes: Data from January-March (gray) are derived from CPS surveys. Data from April (blue) are derived from responses to our online survey. The 95% confidence interval for our most recent estimate of hours per adult is (15.2%, 16.6%). The 95% confidence interval for our most recent estimate of hours per employed is (33.4%, 35.2%).
C.5 Changes in Worker Earnings

Figure C5: Earnings Changes Among Those Working in February, Age 18+

Notes: Results are derived from responses to our online survey from workers who report that they were employed in February 2020. 5.2% of respondents reported that they were unsure of how their earnings last week compared to their usual weekly earnings prior to February 2020.
D Background: Our Labor Market Survey vs. Other Surveys

D.1 The Basic Consumer Population (CPS) Survey

The primary source of labor market statistics in the US is the CPS, which surveys roughly 60,000 households each month. The sample design is a rotating panel, where a given household is interviewed for four months in a row, not interviewed for the next 8 months, and then is interviewed again for four more months (this design ensures that households are interviewed during the same four months in two consecutive calendar years). The CPS is composed of a basic module, which is asked about each household member age 15 and over in every interview month, and a set of supplemental modules that are asked less frequently.

The labor market portion of the basic module asks a host of demographic questions, as well as an intricate sequence of questions about household members’ labor market activity. The labor market questions allow the CPS to assign individuals to one of four basic labor force categories: employed and at work, employed and absent from work, unemployed, and not in the labor force. The distinctions between the latter three categories can be subtle, but are crucially important for the construction of aggregate labor market statistics. This is particularly true in the current economic situation where many workers have been dismissed from work with the hope of returning to work when conditions improve, which can blur the lines between labor force categories. The basic module also asks about hours of work, occupation, and industry for currently employed workers.

Our survey is designed to capture the key elements of the basic CPS module, but with the ability to collect, analyze, and publish results several weeks before the official CPS results are released. In particular, we collect demographic information on respondent’s sex, age, race and ethnicity, education, marital and cohabitation status, and number of children. We then ask a sequence of questions on individuals’ labor market status, hours of work, and industry.

D.2 The CPS Outgoing Rotation Group (ORG)

The labor market questions in the basic CPS module do not ask about workers’ earnings. However, in a household’s fourth and eighth interview month the ORG module of the CPS asks a small number of questions about workers’ “usual” earnings.

Our survey asks all working respondents about usual earnings. We intentionally introduce a slight deviation from the ORG questions by introducing additional language to clarify that by “usual” we mean prior to March 2020. We then ask how workers’ earnings in the first week of April changed relative to their usual earnings, in an attempt to capture high frequency earnings changes that might be missed by the ORG questions about usual earnings.

D.3 Other Supplemental Modules to the CPS

Among the large number of supplemental modules in the CPS, the two most important for labor force estimates are the Annual Social and Economic Supplement (ASEC), asked annually each March, and the Displaced Worker Supplement (DWS), asked annually each January. The ASEC
collects extremely detailed information on labor compensation, other income sources, and government benefits during the previous calendar year. The DWS identifies individuals who were displaced from their job, and follows them for up to several years. Because the ASEC asks about the previous calendar year, the ASEC will not contain information about post-Coronavirus labor market outcomes until the 2021 wave. Because the DWS is only administered each January, it will not contain information about post-Coronavirus labor market outcomes until the 2021 wave.

D.4 The Current Employment Statistics (CES) Survey

The other major labor market survey conducted by the BLS is the CES, which interviews roughly 160,000 business establishments each month about the number, work hours, and earnings of employees. An important distinction between the CES and the CPS is survey coverage. Because the CES is administered to business establishments, it does not interview non-workers, the self-employed, businesses in the agricultural sector, private household workers (like nannies or housekeepers), unpaid family workers, or workers who are on extended unpaid leave. By contrast, the CPS is administered to households, and so in principle should include all these groups. Along this margin, our survey most closely resembles the CPS.

Another important distinction between the CES and the CPS is that the CES measures employment by counting “jobs” from the establishment perspective, while the CPS measures employment by counting individuals. One implication is that an individual who works multiple jobs will raise employment by two in the CES, but only by one in the CPS. Again, along this margin our survey most closely resembles the CPS.

D.5 Weekly Unemployment Claims

The Department of Labor publishes weekly data on the number of unemployment insurance (UI) claims filed. These are a highly valuable labor market indicator, and are available with minimal delay. However, there are several shortcomings of this data, which our survey aims to supplement.

First, there is not a one to one mapping between UI claims and unemployment, for several reasons. Eligible individuals who have not filed claims are not reflected in these statistics. There are at least two reasons why the share of eligible individuals who have not filed UI claims may be unusually high in the present moment. Many individuals who were ineligible for UI prior to the passage of the Coronavirus Aid, Relief, and Economic Security Act on March 27, 2020 may not know that they are now eligible (importantly, this includes many self-employed and many contract workers). And anecdotal reports of overwhelmed unemployment agencies suggest that many individuals may have tried to apply for UI but have not yet been successful. Additionally, the millions of undocumented workers in the US who have no Social Security number are ineligible for UI.

A second limiting factor to UI claims is that they do not reflect changes in labor supply due to changes in hours worked per employed. Workers who are still employed, but who are working fewer hours or who have been told to use vacation/sick days are supplying less labor than previously, but this is not reflected in UI claims. As we show in Section 4.4, this appears to be a crucial
margin in the present context.

Finally, the micro data associated with UI claims are not available to researchers, which prevents any additional analysis. For example, any questions about whose labor supply has declined are not answerable with UI data alone.

D.6 Additional Low Frequency Labor Market Surveys

Policymakers and researchers have available to them a large number of additional labor market surveys, which are administered at an annual frequency or lower. Important examples include the American Community Survey, the Survey of Income and Program Participation, the American Time Use Survey, the Panel Study of Income Dynamics, and the National Longitudinal Studies of Youth. While these surveys will undoubtedly yield rich information about the current economic situation, this information will most likely not be available for a year or more.